Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 14(6)2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35746626

RESUMO

In China, the broad prevalence of H6 subtype influenza viruses, increasingly detected in aquatic birds, promotes their exchange materials with other highly pathogenic human-infecting H5N1, H5N6, and H7N9 influenza viruses. Strikingly, some H6 subtype viruses can infect pigs, dogs, and humans, posing risks to public health. In this study, 9 H6N2 viruses recovered from waterfowl species in the Guangdong province of China in 2018 were isolated and sequenced. Phylogenetic analysis revealed that the genome sequences of these H6N2 viruses belonged to Group I, except for the NP gene in Group III. Coalescent analyses demonstrated that the reassortment of NA and NS genes have occurred in two independent clusters, suggesting H6 subtype viruses had been undergoing a complex reassortant. To examine the evolutionary dynamics and the dissemination of the H6 subtype viruses, a Bayesian stochastic search variable selection was performed for results showing higher viral migration rates between closer provinces, including Guangdong, Jiangxi, Guangxi, and Fujian. Notably, the transmission routes of the H6 subtype viruses were concentrated in Jiangxi Province, the most frequent location for input and output transmission and a region containing Poyang Lake, a well-known wintering site for migration birds. We also found that the aquatic birds, especially ducks, were the most common input source of the viral transmission. In addition, we also found that eight positively selected amino acid sites were identified in HA protein. Given their continuous dissemination and the broad prevalence of the H6 subtype influenza viruses, continued surveillance is warranted in the future.


Assuntos
Virus da Influenza A Subtipo H5N1 , Subtipo H7N9 do Vírus da Influenza A , Influenza Aviária , Animais , Teorema de Bayes , Aves , China/epidemiologia , Cães , Evolução Molecular , Virus da Influenza A Subtipo H5N1/genética , Subtipo H7N9 do Vírus da Influenza A/genética , Influenza Aviária/epidemiologia , Filogenia , Vírus Reordenados , Suínos
3.
Parasitol Res ; 120(9): 3335-3339, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34405281

RESUMO

"Bug as drug" is a concept recognized over a century ago and has gained significant research attention recently for fighting diseases such as immune disorders and others. Bacteria and viruses are constantly studied for this purpose, but the use of parasitic organisms is still rare. Recently, we found that Toxoplasma gondii mutants lacking two lactate dehydrogenases (ME49 Δldh1-Δldh2) were avirulent in mice but able to stimulate high levels of Th1 immunity. This outcome prompted us to determine whether Δldh mutants also displayed antitumor activities. Using a mouse melanoma model, we showed that intratumoral administration of Δldh1-Δldh2 repressed the growth of established tumors and helped to inhibit lethal tumor development in the mice. The sera of parasite-treated mice had high levels of TNF-α and INF-γ, which likely contributed to the tumor-repressing activity. We also found that chronic Toxoplasma infection, which is common in animals and humans, also led to antitumor activity. In addition, pre-existing chronic infections did not affect the antitumor efficiency of the Δldh1-Δldh2 mutant. Together, these results suggest that the attenuated T. gondii mutant Δldh1-Δldh2 has the potential to be a good antitumor therapy and provide new insights into the development of novel tumor therapeutics.


Assuntos
Melanoma/terapia , Toxoplasma , Animais , L-Lactato Desidrogenase/genética , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/terapia , Toxoplasma/enzimologia , Toxoplasma/genética
4.
Front Immunol ; 9: 1814, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30147689

RESUMO

Toxoplasma gondii is an important zoonotic pathogen infecting one-third of the world's population and numerous animals, causing significant healthcare burden and socioeconomic problems. Vaccination is an efficient way to reduce global sero-prevalence, however, ideal vaccines are not yet available. We recently discovered that the Toxoplasma mutant lacking both lactate dehydrogenases LDH1 and LDH2 (Δldh) grew well in vitro but was unable to propagate in mice, making it a good live vaccine candidate. Here, we tested the protection efficacy of ME49 Δldh using a mouse model. Vaccinated mice were efficiently protected from the lethal challenge of a variety of wild-type strains, including type 1 strain RH, type 2 strain ME49, type 3 strain VEG, and a field isolate of Chinese 1. The protection efficacies of a single vaccination were nearly 100% for most cases and it worked well against the challenges of both tachyzoites and tissue cysts. Re-challenging parasites were unable to propagate in vaccinated mice, nor did they make tissue cysts. High levels of Toxoplasma-specific IgG were produced 30 days after immunization and stayed high during the whole tests (at least 125 days). However, passive immunization of naïve mice with sera from vaccinated mice did reduce parasite propagation, but the overall protection against parasite infections was rather limited. On the other hand, Δldh immunization evoked elevated levels of Th1 cytokines like INF-γ and IL-12, at early time points. In addition, splenocytes extracted from immunized mice were able to induce quick and robust INF-γ and other pro-inflammatory cytokine production upon T. gondii antigen stimulation. Together these results suggest that cellular immune responses are the main contributors to the protective immunity elicited by Δldh vaccination, and humoral immunity also contributes partially. We also generated uracil auxotrophic mutants in ME49 and compared their immune protection efficiencies to the Δldh mutants. The results showed that these two types of mutants have similar properties as live vaccine candidates. Taken together, these results suggest that mutants lacking LDH were severely attenuated in virulence but were able to induce strong anti-toxoplasma immune responses, therefore are good candidates for live vaccines.


Assuntos
L-Lactato Desidrogenase/genética , Mutação/genética , Proteínas de Protozoários/genética , Vacinas Protozoárias/imunologia , Células Th1/imunologia , Toxoplasma/fisiologia , Toxoplasmose Animal/imunologia , Doença Aguda , Animais , Anticorpos Antiprotozoários/sangue , Bovinos , Células Cultivadas , Doença Crônica , Fermentação , Humanos , Imunidade , Interferon gama/metabolismo , Interleucina-12/metabolismo , Isoenzimas/genética , Ácido Láctico/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Suínos , Vacinação , Zoonoses
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...